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A THEORETICAL ANALYSIS OF HEAT TRANSFER
IN REGIONS OF SEPARATED FLOW

By Dean R. Chapman
SUMMARY

The flow field analyzed consists of a thin, constant pressure,
viscous mixing layer separated from a solid surface by an- enclosed region
of low-velocity air ("dead air"). The law of conservation of energy is
employed to relate calculated conditions within the separated mixing
layer to the rate of heat transfer at the solid surface. This physical
model is applied to laminar separations in compressible flow for various
Prandtl numbers, including consideration of the case where air is injected
into the separated region. Application to turbulent separations is made

. for a Prandtl number of unity in low-speed flow without injection. All

calculations are for the case of zero boundary-layer thickness at the
position of separation.

For laminar separations the differential equations for viscous flow
at arbitrary Mach number are solved for the enthalpy and velocity profiles
within the thin layer where mixing with dead air takes place. Results
are presented in tabular form for Prandtl numbers between 0.l and 10.

The rate of heat transfer .to a separated laminar region in air (Pr = 0.72)
is calculated to be 0.56 of that to a corresponding attached laminar
boundary layer having the same constant pressure. Injection of gas into
the separated region is calculated to have a powerful effect in reducing
the rate of heat transfer to the wall. It is calculated that a moderate
quantity of gas injection reduces to zero the heat transfer in a laminar
separated flow. ‘

INTROCDUCTION

.Separated laminar layers (sometimes called "free layers") have long
been known to be quite unstable in subsonic flow. A rule of thumb based

" on experiments of von Doenhoff (ref. 1) is that a separated laminar layer

in subsonic flow will remain laminar downstream of separation only for a
run of about 50,000 in Reynolds number (vased on length along separated
layer), after which transition occurs. Because of this low stability
relative to attached laminar flows (which remain laminar to Reynolds num-
bers the order of 108), the special type of separated flow wherein a
viscous layer remains laminar not only downstream of separation but also
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for a short distance downstream of reattachment has occurred only rather
rarely in the past. As a result, the "pure laminar" type of separated
flow, which is the main subject for analysis in this report, formerly has
been regarded primarily as a laboratory curiosity rather than a practical
phenomenon.

Some interest recently has been stimulated in the pure laminar type
of separated flow, inasmich as free laminar layers appear to be surpris-
ingly stable at hypersonic Mach numbers. It was observed in reference 2
that the stability of separated laminar layers increases markedly with an
increase in Mach number until, at Mach numbers near 4, they can become
for certain configurations almost as stable as an attached laminar bound-
ary layer (laminar to about 1 million Reynolds number). This strong
increase in stability makes separated laminar flows of practical interest,
especially at hypersonic Mach numbers. The actual extent of this practi-
cality, however, is not known at present inasmuch as the available data
are meager above Mach numbers of about 4. The effect of cold-wall condi-
tions on the stability of separated. laminar flows is not known, nor is
- the effect of gas injection on stability known.

In view of the trend of increasing stability with increasing Mach
numbers, it is pertinent to inquire into the heat-transfer characteristics
of separated flows. It might be expected intuitively that the rate of
heat transfer from a region of separated laminar flow would be smaller
than that from a comparable attached laminar boundary layer. This expec-
tation, in fact, led Stalder and Nielsen (ref. 3) to conduct experiments
with separated flow induced by a probe in front of a blunt-nosed object.
Instead of finding a lower heat-transfer rate when separation was induced,
they observed a doubling in the heat-transfer rate. In retrospect, how-
ever, it has been concluded from a detailed examination of their original
shadowgraphs that the separated flow induced by the probe was of the
"transitional" type (transition between separation and reattachment),
whereas the attached flow to which they made comparison was that of a
completely laminar boundary layer. They compared a partly turbulent
separated flow with a fully laminar attached flow. Hence, the question
remains open as to whether a pure laminar separated flow has a higher or
lower rate of heat transfer than a comparable attached laminar flow.

The main object of the present paper is to compare by means of theo-
retical calculation the heat-transfer rate in a separated laminar region
with that of a corresponding attached laminar boundary layer. Secondary
objectives are to comnsider the case of gas inJjection, and to apply the
theoretical ideas also to turbulent separation. In a previous paper
(ref. L), the velocity profiles within a separated laminar mixing layer
were calculated under the assumption that the specific heat was constant.
In the present paper, calculations are made of the enthalpy profiles as
well as the rate of heat transfer. The theory of reference 4 is extended
t0o include the case where the specific heat is a function of temperature,
since this case corresponds to conditions encountered in hypersonic
flight.
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NOTATION

width of two-dimensional flow

specific heat at constant pressure

constant of proportionality between viscosity and temperature
constant defined by equation (24)

functions defined by equations (23)

function defined by equation (22)ﬂ

functions defined by equations (26)

‘enthalpy per unit mass

functions defined by equations (48) and (49)
length of separated mixing layer

mass flux (density X velocity X area)

Mach number

sfatic pressure'

total heat flux to wall between separation and reattachment points

Qw

surface ares

average heat flux to wall per unit area,

recovery factor based on enthalpy (see eq. (42))
radius of base of cone

Reynolds number based on conditions at outer edge of mixing layer
and on length 1

gaé constant
Prandtl number
'static temperature

local velocity components in x and y directions, respectively
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coordinates parallel and perpendicular, respectively, to direction
of flow along dividing streamline (W = 0) within mixing layer
mass density

viscosity

stream function defined by equation (U4)

kinematic viscosity, %

coefficient of heat conductivity

ratio of specific heats

dimensionless mass-flow variable defined by equation (10)
function defined by equation (15)

functions defined by equation (32)
Subscripts

active degrees of freedom of molecule (translational and rotational)
dead-air region

outer edge of viscous layer

internal degrees of freedom within molecule

injected mass flow into separated region

dividing stream line.

total condiﬁioné

wall

dimensioﬁlesquﬁantities defined by equation (7)

boundary layer

Superscript

ordinary differentiation
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ANALYSIS

Physical Model

The type of separated flow analyzed i1s depicted schematically in
figure 1. The pressure is regarded as essentially constant over the
length 1 of the two-dimensional laminar mixing layer. Also, in accord-
ance with the theoretical description advanced in reference 2, the region
of recompression through the reattachment zone is assumed to be of small
dimensions compared to 1. This physical picture yields results consist-
ent with the experiments of reference 2, in the sense that the dead-air
pressure calculated according to such a physical picture agrees well with
measurements for the case when reattachment occurs on an ineclined plate.
This establishes some confidence in the mechanism postulated, at least as
a reasonable approximation.

The differential equations of momentum, continuity, and energy for

viscous flow within the relatively thin, constant-pressure, laminar
mixing layer are as follows: ‘

L,  wm_3(, % 0

PR TR dy ) oy g dy.
olew) |, oev) _ 4 | (2)
ox oy
oh oh _ o (¥ oh é%)g
xS 3y \Pr ay> TSy (3)

The conditions at the ocuter edge of the mixing layer provide two
boundary conditions: u(x,o) = ue and h(x,w) = he, where ue and he are
constants since the pressure is constant. The condition that dead air
borders the low-velocity portion of the mixing layer provides two more
boundary conditions: u(x,-w) = 0 and h(x,~w) = hy. These latter two
boundary conditions require some explanation since the mixing layer
cannot extend to -w due to the presence of the wall. Actually, the use
of =0 in the boundary conditions means that the mixing-layer character-
istics are determined as though the wall were an infinite distance away-.
It is assumed, in effect, then, that the presence of the wall distorts
the mixing-layer profiles only to a minor degree in the region where the
velocity is low. This will be a good assumption if the dimensions of
the dead-air region are large compared to the mixing-layer thickness.

3
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The above system of differential equations and boundary conditions
is to be solved subject to the following additional assumptions:

(i) Pr = constant
(ii) p = pRT
(iii) p/me = CT/Te

(iv) mixing-layer thickness at separation is O (or negligible
compared to 1)

Assumption (i) is a common one. Assumption (ii), teken together with
thermodynamics theory, implies that the enthalpy is a function of tempera-
ture only. This allows the specific heat cp to vary with- the tempera-
ture as would be the case in hypersonic flight. Assumption (1ii),
introduced in reference 4, involves a constant C which is selected so

Href CTyer

that Teal P If Tyer 1is selected as the wall temperature, and
e e
Ty Te + S
if Sutherland's equation for viscosity is employed, then C = b e A

Assumption (iv) is made to simplify the mathematical computations, since

it implies that the profiles of velocity and enthalpy are similar at every -
station within the thin mixing layer. Brief discussion is presented later
of how the analysis would be modified to consider the case of finite thick-
ness of boundary layer at separation.

Transformation of Equations

The solution of equations (1) to (3) proceeds exactly the same as in
references 4 and 5 by slightly modifying the von Mises transformation
(ref. 6) as generalized to compressible flow by von Kérmfn and Tsien
(ref. 7). The first step is to employ the stream function V¥ as an
independent variable, where

0
pu:peg.li ov = -pe = (%)

since this variable automatically satisfies the continuity equation (2).
Transformation is made to (x*,w*) coordinates through the transformation

formulsase
) =P_E<i>
<§y e Pe \OV/A _ 2

SRR
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The following dimensionless variables are introduced:
Uy = u/ue hy = h/he
¥/AfveualC (7)

Py =0/Pe By = u/ug = CT/Te = CT,

1

xg = x/1 Y

When substituted into equations (1) and (3), the transformation formulae
and dimensionless variables yield two basic equations

*
8
oh, 1 oh,, ue2 du,,
ax* TP Bxlf* o B\lf*> ¥ : B\Lf*> ®)

It is noted that neither the Mach number nor the ratio of specific heats

‘Y appears in these equations. Only the ratio uez/he appears. In the

special case where Te 1is low enough (less than about 700° R for air)

s0 that no vibrational energy is excited within molecules, then

ue2/he = (7e - 1)Mg®. In the following, however, the form containing
he 1is retained throughout.

A relatively simple solution of equations (8) and (9) is made pos-
sible since the momentum equation (eq. (8)) is independent of the energy
equation (eq. (9)). The energy equation, however, is not independent of
the momentum equation and, hence, the momentum equation must be solved
first.

Solution of Momentum Equation

A solution of the momentum equation already has been obtained in
reference 4. This solution corresponds to similar velocity profiles at
each station along the mixing layer. The solution of reference 4 is
given in terms of a single variable

=V, v (10)
which reduces equation (8) to the ordinsry differential equation

£ du, 4 du .
R ELFICED )
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Solution of this nonlinear differential equation, subject to the boundary
conditions u*(w) =1 and u*(-m) = 0, was obtained through the numerical

procedure described in reference 4. The function u,(f) is tabulated in

table I. :

A relation between ¢ and the geometric coordinates (x,y) is
required later in order to convert the u*(g) function into physical
velocity profiles u*(x,y). The appropriate relationship is derived
from the stream-function differential

Pe Pe

ou y_Ede=dqf=<§-‘£ d§+<§‘£ dx
38/ Ox, ¢

by considering a fixed value of x

]

pu dy = pereueIC %%? at pereuexC at (12)

and then integrating

4
y [Be L[ % at
2. vexC - Q\Z? Py \/p T 2u, (13)

Tt is seen that even though the momentum equation is completely solved by
the function uy(f), actual velocity profiles cannot be calculated until
the temperature furction T,(§) is calculated, as this function together
with the u,({) function determines the relation between € and y.

The variable € is clearly a dimensionless mass-flow variable
(see eq. (12)). Inasmuch as the mass flux m drawn out from the dead
air by the scavenging action of the mixing layer up to station x must
be finite,

0 m €=0
JF pu dy = ¢ = peueuexc\jp df = finite
=0 E=Cq

—Cdf/peueuexc ‘ (1k)

where {. 1is the value of ¢ at u, =0. Table I shows that Qd =-1.233.

5 4pzt o< iyve, though not necessary to subsequent analysis, to
digress cempor.. . in order to illustrate the relation between the
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mass-flow variable ¢ and the more familiar Blasius variable 17
where

d
1 at
n= 3 jc: ™ (15)

If a function f(n) is employed as the dependent variable instead of the
function u*(C), a different differential equation is obtained in place
of equation (1l1). By setting

£(n) = ¢ (16)
so that
Le(n) =—l--d£=u* (17)
2 2 dan
) the differential equation becomes
f" + £ff" = 0 (18)

which is the familiar Blasius equation for incompressible, viscous,
laminsr flow over a flat plate. The boundary conditions to which equa-
tion (18) is subjected, however, are not the same as the familiar Blasius
boundary conditions.. The boundary conditions for a separated laminar
mixing layer are

£1(w) = 2 £(0) =0 fl'(-oo) =0

The third of these boundary conditions differs from the corresponding
boundary conditions in Blasius' problem, which would be £'(0) = 0. The
relation between the function f£(7) and the function u*(C) is given by
equations (16), (17), end the relationship f£"(n) = bu,du, /at .

Solution of Energy Equation

Tnasmuch as the variable § is pertinent to the solution of the
momentum equation, the energy equation (9) also is transformed to (Q,X*)
coordinates. ' ' |
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32 duy) dhy oh 2 (B

This equation will be solved subject to the boundary condition

h(-») = hy; = constant, which implies that the temperature of the dead air
is constant Jjust before it is drawn into the mixing layer. It is not
known whether a constant temperature of this dead air can be realized in
practice, inasmuch as appropriate experiments have not yet been conducted.
The case hg = constant, though, is relatively simple since the term
involving 0/dx, can be dropped from equation (19). If subsequent experi-
ments show & variable "wall" enthalpy hy to be essential, then equa-
tion (19) with the O/dx, term included would have to be solved in a
manner analogous to the solution of reference 5. In the present analysis,
however, it is assumed that Oh,/Oxy = O, so that '

d2hy t au) dhyk ue2 (du >2
SRR G R Ik SRRk s =)

This is a linear, second-order, ordinary differential equation, and is
amenable to general solution. By noting from equation (11) that

wu," + (u*')2 + tu,'/2 = 0, the general solution to equation (20) cen
. be written as

| * L Pr A Prug? [ £ Pr at
h(8) = 1+ Ch[ ()7 2 "JIE:"j; (o) G(0) ZE (1)

where C,; 1is an arbitrary constant to be evaluated from boundary condi-
tions, and where

g

&) = [ Cnuguy T 2 (22)
o *

Actually, the lower limit could, with equal generality, be an arbitrary
number; zero is a convenient limit for reasons which will later appear.
For convenience, the following two functions are introduced which will

appear often in subsequent equations: -

o0 at
Fl(§) Ef ("’u*u*')Pr Eu-; ‘
§ 7 . (23)

0 Pr ¢
Fo(¢) = %r-f (buyue')  G(6) :T*"
c /
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The constant C; can now be written as

by

ue2 ¢
i - 1 - Falla)

h
Fl(Cd) (2 )

Cl=

where F,(f3) and F5({4) depend only on the Prandtl number. Their values
have been calculated from equations (23) and the known solution for ug(6)
as follows: '

Pr F;(gd) Fa(gd)

0.1 [11.73 |-0.202
25| 5.61 | -.192
5 | 3.40 | -.178
721 2.58 | -.175
.0 | 2.00 | -.173
5
0
0

1.k425) -.175
1.089| -.176
079| -.20h

The solution for enthalpy distribution becomes:

. 2
h*_=.5h;=1+@§- )gl(C) +;§;gg(§) (25)

where the normalized functions g,(f) and g,(§) are defined as

g1(8) = F1(8)/F1(8q)
gg(C) = Fg(g) = gl(C)Fg(gd)

(26)

in order to have the following boundary values

gl(Cd)

g,(8q) =0 ; 85 ()

0

i
i

1;  gy(»)

0]

The functions g,(§) and g,(§) have been calculated from equations (23)
and (26) using the numerical s6lution for u,(f). These functions have
been determined for Prandtl numbers of 0.l, 0.25, 0.5, 0.72, 1.0, 1.5,
2.0, and 10.0. Results are presented in table II. This table enables

the enthalpy distribution to be calculated readily as @ function of €.
The Pr range of interest for gas flows is between about 0.25 and 1.0;
the other values would correspond to liguids (when the density is constant
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the present solution corresponds to the assumption of "constant
properties"). :

For the special case of Pr = 1, equations (26) reduce merely to
(gl)PI'=l =1 - ug (gZ)Pr=1 = u—)(-(l = u*)

Equation (25) reduces to

(h*)Pr=1=l+<—°l (1 - uy) +112-f§u*(l - uy)

by (%w w2 ue2 .
= - ] -1 - =& € - ULl 2
he he 2he * 2he (27)

which is the well-known Crocco integral for viscous flow of & gas with
Prandtl number of unity.

Velocity, Enthalpy, and Temperature Profiles
in Physical Coordinates

As noted previously, the relation between £ and y 1is determined

by the equation
o
y | Qe h/‘ at
A ’ = T, e (13)
2 VexC o * 211*

This equation involves T, whereas the solution to the energy differen-
tial equation involves hyg. The h(T) 1"elertlonslrnp for any gas obeying
the equation of state p = pRT is

h = cp,T + hint (28)
T
Where hintsh/\ Cp; th is the enthalpy for internal motion within the

molecules, cp = 7aR/(7a - 1) is the constant specific heat for the active
degrees of freedom (translation and rotation), and Cpint is the

temperature-dependent specific-heat contribution for the internal degrees
of freedom (vibration and electronic excitation). A diatomic gas, or a
gas with linear molecules, corresponds to 7g = 7/5; a8 polyatomic gas
corresponds to 7g = h/3 The total specific heat cp 1s obtained by
differentiating equation (28).
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7e R+c
(o] =
p 7a"l p

int

7a
= R + + ¢ 2
Vg =1 (vaib pelec) ' (29)

For a given gas, hy,¢ 1s a known function of T, which, in turn, is a
known function of h. The hjnt(T) relationship is different for each
gas having internal energy within a molecule. In terms-of the function
(hint)* = hint/he the dimensionless temperature can be expressed as

=g y
T = — = h - h . (30)

¥ Te cp Te * *1nt. -
a

which can be combined with equations (13) and (15) to yield

5e (7, -1) he[ & 4 ¢ g]
Ve %C 7s  RTe _[ B Ty '/O‘ ™

g
(75_ - l)he hy UaZ dC

rofs<
1}

where the Prandtl number independent function n(C) is the same as pre-
viously defined by equation (15) (tabulated in table I), and the supple-
mentary Prandtl number dependent functions 10,({) and n,({) are defined
by the equations

¢
n© = [ ) &
Og (32)
- al
nz(é) = “Zi gz(g) E;;

Values of n, and 7, are tabulated in table III. Equation (31) enables
the velocity and enthalpy profiles in § coordinates to be converted
into the (x,y) physical coordinates. The enthalpy profiles together with
the h(T) function for a given gas enable the temperature profile to be
determined. The velocity and temperature profiles, of course, determine
the Mach number profiles. ’
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For the special case of gases having a constant specific heat (which
would be the case of gases having no vibration within molecules, or of
. gases over the special temperature range where the vibrational energy is
fully excited) the equations relating y and { simplify considerably.
The integral term in equation (31) vanishes since hjipt is O. Moreover,
h = [y/(y -1)IRT for this special case. Consequently

Y[ Ze | ?_‘f.f.‘_ -1 ‘
5 vexc—n+<Te l>n1+ 5— Me™1, (33)

and the Mach number profile is determined by

M = Me Wy = Meu-x- ) (3)+)

U.ez >
hy h, + She Uy,
hte ue?

1+ Pha

becomes for this special case

‘ 1+ <2E - #)81 + 1= = M'ez(u*2 + g5)
hy T

Ty e 2
i 2l T (35)
Tte bte -1 5

1+ ) Me

Heat Transfer and Recovery Factor at Wall

Inasmuch as the solution to the differential equations of viscous
flow pertain to the motion only within the thin mixing layer, which is
located a considerable distance from the wall surface, it is necessary
to relate the rate of heat transfer at the wall to the properties of the
mixing layer. This is done by means- of the law of energy conservation.
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Within any closed control surface A, the conservation of energy requires
that '

heat = increase in + work done + work done
input internal by gas by gas
across A energy through through
and normal tangential
kinetic pressures stresses
energy on A .on A

.

The work contribution of tangential stresses often is not considered
in integral formulations of the energy conservation law, but it must be
‘included here because of the type of contour selected subsequently. For
steady flow, the energy law can be converted to the form

ffx-g—EdA=ff<e+‘;—2 andA+ffandA+ffTthA (36)
A A A A

L)

where the various symbols are:

n coordinete normal to the surface A (positive if directed outward)
N coefficient of heat conduction (cpu/Pr)

e internal energy per unit mass (h - p/p)

V, velocity component normal to A (positive if directed outwerd)

V¢ velocity component tangential to A (positive if shear
stress represents work done by gas within A)

T  shear stress tangential to A (|p du/dy|)

Along a streamline V, 1s O, and along a wall Vi 1is O; hence by
applying this conservation theorem to the closed contour formed by the
dividing streamline SR (designated by subscript o, as sketched in
fig. 1) together with the wall boundary RS, there results

1 1 :
oT _ ou ’
b‘ZT <} 5%, dx - Q, =0+ 0 + b‘l? (F 5 O(-uo)dx (36a)

where b 1is the width of the two-dimensional flow, and where @ is
the rate of heat addition to the wall (-Q, is the rate of heat addition
to the gas). The tangential velocity U, has a negative sign prefixed
inasmuch as the shear stress T does work on the gas. By solving
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for Qy, substituting A = cpp/Pr, and employing € as an independent
variable, there results

: 1
QW du* BC
B hef (ac 3y, uef "o\ & 'a§ou°dx (1)

0

According to equation (22), G(O) = 0, hence differentiation of equa-
tion (21) yields

’ (buy u, 1)F
<dh*> - -, —Xo*0 (38)
7‘Z—O 2u-a(-o ’ .

Also, from equation (12)

( "0“0 | (39)

so that the integrals in equation (37) become <since PyHy = C = p*ou*;>

Pr
(Muy ux ') Ue2
Q [®] € 2 ]
- + 2 B Uxo Yo } (40)

Quy A
pal he,/peueuelc -Cy

This is a relatively simple equation inasmuch as U, (Eiuo/ue) and
' (=du,/ab at § = 0) are constants independent of Pr, having the
values 0. 587 and 0.341, respectlvely

Under adiabatic conditions at the wall @Qy = O, and the value of the
enthalpy at the wall is hgy, so that by substituting C, from equa-
tion (24) into equation (40)

h, 2 YPruy s ug
ra, = 20 = L 5 [RaCa) ¢ o gr Fata) | (1)

from which it is clear that the recovery factor r is as follows:

:haw h".}‘. haw - he )+PI'U*O U.*o
ey~ e m =Tt ¢

4/ L. =-h a2\>d " '
{uas/os T he ( Uy U )

O Ty () (42)
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The dimensionless, average, heat-transfer rate per unit area qW Qw/bl
becomes

. Pr
W [T D) (43)
Pele (hay - by) Re  PrF,(£4)

Numerical computations of r from equation (42) are tabulated in

column (a) of teble IV. Values of g, YRe/C
Pelte (hyy = by
equation (43) are tebulated in column (c) of table IV.

computed from

Heat Transfer When Gas Is Injected
Into Separated Region

It is surprisingly easy to generalize the preceding analysis in
order to consider conditions where gas is injected into the dead-air
region. When a mass flow mi is injected, there no longer is an equality
between the mass flux drawn out along the mixing layer and the mass flux
reversed near the reattachment zone. Instead, in a steady flow, the same
amount of mass flow my as is injected intq the dead-air region also
would pass downstream near reattachment between the dividing streamline
and some streamline displaced at a distance y; below the dividing

streamline.
1 //'\ _AT0ye0
\“/ %

_ S TS =T
‘%)’; S
\\ il terrrrreaddd
A\ m;

As indicated in the sketch, where only those streamlines below the dividing
streamline are drawn, the mass-~flow parameter corresponding to the par-
ticular streamline displaced a distance y; from the dividing streamline
is designated as Cl The equation for the balance between mass flow
injectéd (near B) and mass flow escaplng (near R) is

Hil; =f pu dy:,lpeueueZC[ d§ = -gl"j peue“elc (""h’)
i

/

b
Ji
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The law of conservation of energy for the contour RBSAR in the sketch

is (see eq. (36))
1 o 1
oT -
bf (7\ g dx - Qy = hymj + b_f <h + 9-23>pudy+ bf <p, %-;‘_- (..u_o)d_x

which becomes, after dimensionless variables are introduced and the
assumption is made that the enthalpy of the injected gas (hi) is a con-
stant equal to the enthalpy at the wall,

€4 2
Qw Jf 1 ( Ue %)
. | S h* - hW ot — u* dC ( )'1'5)
he‘J peueuelc gd ¥ 2he .

This equation perhaps could have béen written down directly by considering
the conservation of energy for a contour comprising the streamline BR
and the wall RB. It also can be expressed in terms of Gy = Qw/bl as

a Civ 2
3! f <h by e 2>§ 46
L x - B + 2 w)a . (u6)
hepeuehelC Cq e

or, by using equations (21), (23), and (24)

& CoFa (8T (Ey) Be? L) (47)
= o o + ey o
b fPoUighelC Fathalmathl T oope M

where the functions I, and I, are defined as

Sro Et) ¢
1,.(¢) = 1-2 a =/ [1-g.(6)]al (48)
1 4d [ Fl(Cd)J [d 1251
¢ 4
() = [Fo(8) - Fo(bq) + ue2lal = -1, (8)Fa(8q) +\/ﬂ [gz(g)'*'u*z]dC
gd §d

(49)
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By substituting into equation (46) the expression for C, from equa-
tion (24) and dividing by the rate of heat transfer without injection,
there results

, .2 ’ h _
o 5 E[mtancs ()] - (- Uy -
- 2
»(Qw)gi-.-.o (Q.w)gi:o ?he- [Fz(cd)Il(O) + 12(0)] - (ﬁe—‘f - l>Il(O)
The value for the recovery factdr is
r = Fo(ta) + %;- (51)
1\°1

These equations depend only on the mass flow injected into the dead-air
region, as determined by the dimensionless varisble Ci‘ The calculation
of the recovery factor and heat transfer in a given case requires a
knowledge of the functions I, and I, which are tabulated in table V,
and the constant F2(§d)~which depends only on the Prandtl number as

_ tabulated earlier.

Skin Friction

By applying the momentum conservation law to the same closed contour
as that to which the energy conservation law was applied (contour composed
of dividing streamline SR in fig. 1 together with wall boundary RS),
the effective skin friction can be estimated. Inasmuch as there is no
mass flux in or out of this contour, momentum conservation requires that

in x direction

: R
force on wall _ Fy = b\jr [(F §§> + (pe<-p)cos(n,x)]dx (52)
o o

where (n,x) is the angle between the x direction and the outward normal
direction, and xR 1is the distance to the reattachment point. It is
seen that the term involving pressure does not vanish as i1t did in the
energy conservation integral. This is because p in the momentum inte-
gral is multipliéd by the honzero term cos(n,x), whereas p 1in the
energy integral is multiplied by the normal velocity component V, which
vanishes for the particular contour selected. The term involving cos(n,x)
depends on the exact shape of streamlines near reattachment, and would be
different for each flow. Consequently, it does not seem possible to make
any more than a rough estimate of the skin friction for the general case.
Such an estimate can be made by disregarding the term (p, - p)cos(n,x)
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which is zero everywhere except near the reattachment zone (where locally
p departs from ©pg). Thus,

A
F
Op = B - — f(u?)dx : (53)
2peuez(bl) PeUe™l %

By using equation (39) and noting that (p*u*l) = C, the integral becomes

. ,C _ ,C
CF'vhq*ou*o ﬁg = 0.80 E; | (5h)

It will be seen shortly that this estimate of skin friction is the same
as that which would be obtained by arbitrarily applying Reynolds analogy
to the heat-transfer rate calculated for Pr = 1.

If gas is injected into the dead-air region either at low velocity
or in the direction normal to the mixing layer, then only one additional

term
o .
-b f puzdy
I3

must be added to equation (52) for skin friction. Conservation of momen-
tum within the portion of mixing layer below the dividing streamline,

however, requires that
l o]
Jf (E éE dx =k/1 pu2dy
ay,
o o}

-00

From equation (12) it is seen that
f pu2dy = uepeNVelelC f u,at (55)

so that the estimate of skin friction with injection can be written as

‘CF~2\/§—e-<fou*d§ -fou*d§>=2jgf§iu*d§ (56)
' Sty by ty
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For the special case of no injection, integration of the u*(C) function
(table I) yields

C .
(Or)g o ~ 0196

in agreement with equation (54).

RESULTS AND DISCUSSION

Comparison With Results for Laminar Boundary Layers

Recovery factor.- A good way to visualize the results of the pre-
ceding analysis is to compare them with corresponding calculations for
a flat plate over which a constant-pressure laminar boundary layer flows.
The two functions g, and g,, which combine linearly to yield the
enthalpy-velocity relationship for a separated laminar mixing layer
(according to eq. (25)) are shown in figure 2. Also shown for purposes
_of comparison are the corresponding two functions for a laminar boundary
layer (according to the analysis of refs. 5 and 8). For Pr = 1 the
g, and g, functions are equal to 1 - uy and u*(l-u*), respectively;
these quantities also are shown in figure 2. As might have been antici-
pated for Pr near 1, the component functions for enthalpy are much the
same for the two types of viscous layer. Since the recovery factor is
merely a measure of the enthalpy when the velocity is zero, it too should
be nearly the same for the two types of laminar flow. The recovery factor
for a flat plate in an incompressible stream is very nearly equal to JTE}
as first calculated by Pohlhsusen (ref. 9). In a compressible stream the
recovery factor is unaffected by variation of Mach number within the
framework of assumptions made in the present analysis. A comparison of
JPr with the values of recovery factor computed herein for separated
laminar flows is made in the following table:

Recovery factor in
separated flow JE;
Pr r
0.1 0.361 0.316
.25 <504 .500
.5 712 .707
.72 .850 .8ho
1.0 1.000 1.000
1.5 1.228 . 1.225
2.0 1.423 1.41h
10.0 3.27 3.16
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It is seen that the recovery factor for pure laminar separated regions
is approximately equal to NPr. Consequently the recovery factors for a
separated mixing layer and an attached boundary layer are essentially the

same .

Rate of heat transfer.- A comparison of the corresponding rates of
heat transfer yields different results. For the flow of & compressible
laminar boundary layer over a flat plate under the same framework of
assumptions as employed herein, the average rate of heat transfer (qw)bz

according to references 5 and 8 is . .

() . o
Vbl Re _ M (z 0.664 Pr 2/s for Pr near l) (57)
pete (by - hay) N C Pr _ .

A comparison with the rate of heat transfer for the pure laminar type of
separated flow is made in the following table:

Separated mixing

layer Boundary layer _
et | T |
- -
peué (hW - haw) peue (hW = haw) qw bl
0.1 | 0.833 2.70% 0.31
.25 6Th 1.572 43
-5 .526 1.03 51|
.72 457 .820 .56
1.0 .399 .66k .60
1.5 -335 .510 .66
2.0 .293 L21 (¢
10.0 .135 k6 .92

@The calculations of boundary-layer flow for
small Prandtl numbers (e.g., for Pr=0.1
and 0.25) are based primarily on appro-
priate small Pr expansion formulae developed
by P. Lagerstrom and H. Liepmann in some
unpublished research.

In calculating the ratio qW/(qW)bl it is assumed that the values
of pe; Ue, Re, and hw/h are the same for the two cases. It is to be
noted that the ratio §w7(dw)bl of the two heat fluxes 1s independent
of Mg, Re, and hw/he- For air (Pr = 0.72), the calculated heat transfer
in a separated laminar mixing layer is 0.56 of that for a corresponding
attached laminar boundary layer. ’
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Attention is called to the fact that the use of the integral form
of the energy conservation law enabled only the average (or over-all)
rate of heat transfer g, to be calculated and not the local rate. In
this respect, the present analysis of separated flows is unlike the
analysis of an attached laminar boundery layer wherein both the local
distribution and the average rate of heat transfer can be calculated.
The local distribution of heat flux along the wall of a separated flow
would depend on the details of the vortex-like motion within the region
of dead air lying between the wall and the thin mixing layer. Without
considering these details together with the particular shape of the wall,
the theory cannot provide information about the local rate of heat
transfer.

Skin friction.- Since C‘) for an attached laminar boundary layer
Flpl :

is 1.328 NC/Re (see ref. 5), it follows from equation (54) that the esti-
mated value for effective friction of a separated laminar mixing layer is

0.80/1.328 = 0.60 of that for the corresponding attached laminar boundary
layer. At Pr=1 the heat flux, as tabulated above, also is 0.60 of that
for the corresponding attached laminar boundary. Thus the estimate of
skin friction is the same as that which would be obtained by arbitrarily
applying Reynolds analogy.

Velocity and temperature profiles.- To illustrate further the rela-
tive characteristics of separated layers and attached boundary layers, a
comparison of both types of layer for Me = 10 is presented in figures 3
and 4 showing velocity and temperature profiles, respectively. The two
extreme conditions of TW/Te =1 and Ty = Taw are considered, as well as
a third condition representing Tw/Te = 4, These examples illustrate both
some differences and similarities between a separated mixing layer and an
attached boundary layer. For example, mixing layers are several times
thicker than boundary layers, yet the maximum temperature attained within
each layer for cold-wall conditions is essentially the same.

Flow with gas injection.- Numerical results illustrating the effect
of mass injection on recovery factor in separated flow are presented in
figure 5 for the values Pr = 0.5, 0.72, and 1.0. It is evident that
for Pr = 1 the recovery factor is unaffected by mass injection and is the
same. for the separated mixing layer as it is for the attached laminar
layer. When ©Pr < 1, however, the recovery factor is lowered substantially
by injection, for both mixing layer and boundary layer. The curve repre=-
senting the laminar boundary layer with mass injection (dotted line in
fig. 5) is taken from the calculations of Low (ref. 10) which are based on
the seme viscosity-temperature relationship as is used herein.

The effect of gas injection on heat-transfer rate can be conveniently
illustrated through consideration of several special cases which simplify
the general equation (50). First, for the special case of hw/he =1
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(which would imply TW/Te = 1 if the specific heat were constant), then
equation (50) becomes

Quw Fo(8a)I (61) + Io(84)

= 58
zQw)Ci=O . F,(tq)I,(0) + I5(0) (58=)

which is independent of Mach number. Also, if the Mach number 1s very
large so that Me2 > > (hy/he - 1) (or ue?/2he > > (hy/he - 1)), then
equation (50) again reduces to the same expression

G | Ra(ta)Tats) + Ta(6s)

W | (580)
(@) =0 |ymen  F2(8a)T2(0) + I5(0)

For gases, expressions (58) also are nearly independent of the Prandtl
number, as the curves in figure 6 illustrate for Pr = 0.5, 0.72, and 1.0.
.If a different limiting case is considered, namely, Me—> O, then

ue2/2he < < (hy/he - 1), and equation (50) becomes :

Qv Il(gi)

) (59)
(QW)§i=o Mg=0 1,(0)

Numerical calculations show this ratio to be only slightly higher than

the ratio given by equation (58). For example, at . -{j = O.h, the ratio

. in equation (58) representing Mg—>®, or hy=he, is 0.49 (for Pr=0.72),
whereas the ratio in equation (59) representing Me —>0 is 0.52. For
practical purposes, then, the curves in figure 6 are applicable to a

wide variety of conditions.

As perhaps might be anticipated, the effect of mass injection on the
estimated skin friction is much the same as the effect on heat transfer.
At Pr = 1, for example, g, is equal to 1l - uy, as previously noted, so
the combination of equations (48) and (56) yields for the ratio of estimated
skin friction with injection to that without injection

° CF Il(gi)
- = 2217 60
(CF)§i=o Prei Il(O) ( )

This re*io is identical to the corresponding ratio of heat-transfer rates,
as indicated by eguation (59) for low-speed flow. Inasmuch as the ratio
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in equation (59) is practically the same as that in equations (58), it
follows that the effect of mass injection on estimated skin friction is -
for practical purposes - essentially the same as the effect on heat-
transfer rate (as represented by the curves in figure 6).

Computational Checks and Extensions of Analysis

It was found possible to obtain an independent check on the internal
consistency of the numerical calculations by employing certain integral
considerations other than those used in the main analysis. An example of
such a check already has been observed. The quantity CFdRe/C for sepa-
rated flow without injection is equal to. the differential expression

hu*ou*o', according to equation (54), yet also should be equal to the
o

-integral expression 2 | uydl, according to equation (56). The table

g
of u,(§) yields values of 0.80L and 0.796, respectively, for these two
independent expressions. This is considered to be adequate agreement for

_ present purposes. Similarly, independent integral checks (usually to

within a few-tenths of 1 percent) of the differential expressions for both
recovery factor and heat-transfer rate were obtained for all Prandtl num-
bers. Details are presented in Appendix A.

Probably the most significant feature of the integral method employed
to check computations is that it yields equations which also can be applied
to turbulent separated flows, provided the velocity profiles in the turbu-
lent mixing layer are known. Details of the application to turbulent
separation are presented in Appendix B. It will suffice here to note that
velocity-profile data for turbulent mixing layers at high Mach numbers are
not yet available, so the numerical calculations are restricted to low
Mach numbers where such data are available. The calculated results for
low-speed flow indicate that the heat-transfer rate to a separated turbu-
lent flow is much higher than that to a comparable attached turbulent
boundary layer. This result for turbulent flows contrasts sharply with
the corresponding result for laminar flows.

Two other extensions can be made to the analysis. One is to axially
symmetric flow, which is a rather simple extension and is presented in
Appendix C. The other is to separated flows wherein the boundary-layer
thickness at separation ©®g is sizable. This is not a simple extension.
Equation (36a) would apply directly to this more general case, but great
difficulty would be encountered in computing (BT/By)O, (Bu/By)o, and u,
at various stations along the dividing streamline of the mixing layer.

In effect, the absence of similar profiles for the case where g 1is not
zero would require that partial differential equations be solved for
u(x,y) and T(x,y), rather than ordinary differential equations.
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Some Practical Aspects of Gas Injection

The practical aspects of gas injection for separated flows are
expected to be quite different than for flows of an attached laminar
' boundary layer. It is well known that the injection of gas through a
porous wall unfortunately has a strong destabilizing effect on the lami-
nar boundary-layer flow along that wall. There is no evident reason,
however, to expect that the gas injection into a separated region through
a porous wall, which is displaced a considerable distance from the sepa-
rated laminar mixing layer, would necessarily have a strong destabilizing
effect on the stability of the mixing layer. Such injection, if properly
done, might have a favorable effect on stability inasmuch as the pressure
rise near reattachment is reduced when gas is injected, and this pressure
rise is important to the stability of the laminar flow. Some experiments
on the effect of injection on stability clearly are in order.

If a mass flux of gas equal in magnitude to

o .0
JF pu dy = ./peueuelc \/p af = -84 N PeuekelC (65)
a

is injected into a separated region, then no air would be reversed near
the reattachment zone. For this particular quantity of injection the

heat transfer (and the estimated skin friction) would be zero. In mathe-
matical terms, for §; = {5, then Il(gd) = Iz(gd) = 0 and Q, 1is there-
fore zero (see eq. (50)). It is interesting to consider an example in
order to obtain a physical feeling for the magnitude which this particular
rate of mass injection would represent in a practical case. Consider
first, as sketched, a cone with 30° total included angle, a base radius

Dividing =
streamlme\ "
i ”" -
¢— - o5 EEZZ _ storage _

m

of 1 foot, flying at a Mach number of 20 at an altitude of 100,000 feet,
and containing initially l/3 of its volume as stored liquid air (or liquid
nitrogen). For the case §; = {4, for which Qy = 0, the cone would
travel in steady flight a distance of approximately 1.4x106 body diameters
(or about, 500 miles) before the stored liquid had been completely injected
into the separated region. Along this length of flight path, the heat
transfer would be zero. After all mass had been expended, the rate of
heat transfer would be 0.56 of that for a cone of 15° semiangle (provided
the separated layer remained laminar).
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Inasmuch as the quantities of mass injection required are relatively
low, the scheme of mass injection into separated regions may have practi-
cal application. The degree of practicality depends upon the Reynolds
numbers up to which separated mixing layers can be maintained laminar.
BExperiments are required to ascertain this under the conditions of hyper-
sonic flight where the wall is cool compared to stagnation conditions and
where gas is injected 1nto the separated region.

CONCLUSIONS

The conclusions which follow have been obtained from an analysis of
separated laminar flows wherein the thickness of the boundary layer is
zero at the separation point:

1. The recovery factor in regions of separated lamlnar flow is
approximately equal to the square root of the Prandtl number (to within
1 percent over the range of Prandtl numbers between 0.25 and 2. 0) and,
hence, is essentially the same as that of an attached laminar boundary-
layer flow. :

2. The calculated rate of heat transfer from a separated laminar
mixing layer is less than that from an attached laminar boundary layer at
corresponding values. of Mach number, Reynolds number, and wall to stream
temperature ratio; the ratio of the heat flux in the separated flow to
that in the attached flow is a function only of the Prandtl number, and
has the numerical value of 0.56 for ‘Pr = 0.72 (the value for air).

3. Injection of gas into the dead-air region of a separated ldminar
flow is calculated to have a powerful effect in reducing heat-transfer
rates, inasmuch as a moderate quantity of injection can reduce the heat
flux to zero.

4, The effective skin friction for separated laminar flows is
estimated to be about 0.6 of that for an attached laminar boundary-layer
flow, and is affected by gas injection in essentially the same way as
heat transfer is.

Ames Aeronsutical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 25, 1956
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APPENDIX A

CONTOUR INTEGRAL CHECKS ON ACCURACY

- OF NUMERICAL CALCULATIONS

A check for internal consistency on the numerical calculation of
u*(C) can be obtained by noting that the conservation law of linear
momentum in the x direction, when applied to a contour enclosing the
mixing layer, requires that

fo) [+
f puZdy =f pu(ue - u)dy
-00 (@) )
In (x,C) coordinate system, this requirement becomes
le) (0] ’ .
f u, 46 =f (2 - uy)al (A1)
§d ©

Numerical evaluation of these two integrals from the u*(C) solution
yields”

o}

f u,df = 0.398 (a2)
Ca
and
f (1 - w,)al = 0.399 (A3)
o]

These two integrals agree within 0.25 percent. As a further check on
u,, it may be noted from the differential equation (11) that when uy = O,
(du*/dQ)C(i must be the same as -Qd/2. The values in table I show that

(du*/d§)§d= +0.620 and -{3/2 = +0.617. These values check within

0.5 percent.
Checks on the calculations of r and Q, can be obtained from the

energy conservation law by considering a contour enclosing only the dead-
alr region. The flux of energy fed into the dead-air region near the

-reattachment zone is
o "
bf <h +—“l?->pu dy
B -0 -
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o]
This energy flux is transported by the mass flux bk/q pu dy, which
must be equal to the mass flux reversed by the pressﬁ?é rise near the
reattachment zone. (This mass flux, in turn, must also be equal to the
mass flux re-entering the mixing layer after some heat energy has been
imparted to the wall.) When this mass flux leaves the dead-air region
and enters the mixing layer, it transports an energy flux of

]
b\/p hyp Oy Viydx

O

which, from the continuity equation, is equal to

0
b‘jP h,pu 4y
-0

Consequently, the rate of heat transfer to the wall must be the difference
between these two energy fluxes.

o 2
Qy = bf (h - hy + u—é->ou dy (ak)

In dimensionless variables,

_ . )
Qu = bhe v/ Pelete 1C f <h* - hy, + -glllﬁdt, (a5)

Ca

By substituting hy, from equation (21), and setting Qw/bl = iw, there
is obtained

5 o o o . :
%y /Re _ _ Ue™ ) ¢
—————peuehe —(—)— = C; \/;d [Fy(C) Fl(Cd)]d§ + She 4(1 [Fz(g) Fz(gd)]d“ +
E ° u,2at 4 (86)

2he Ji,
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Under adiabatic wall conditions @y = O, and hy = hgy; hence by substi-
tuting C, from equation (2k)

o .
fgd[Fg(é) - Fo(8g) +u,2lat

) |
B 14 g {R(ta) - Fa(te) =Y
. =1 f§ [F,(€) - F,(tg)lat

d
from which it follows that an expression alternate to equation (42) for
the recovery factor is

o]
d[Fz(s) - Fo(8q) + u,Zlal

[e}}
f [F,(t) - F,(Cq)at
Ca

200 (u)

= F2(§d) + Il(o)

r = By(tq) - Py(te) =

where the functions I, and I, are, as defined previously by equa-

tions (48) and (L49)

¢
I,(¢) = f [1 - gy (t)1at
Ve,

¢
L(t) f [Fo() - Folly) + welal

s
Expression (A7) should be numerically equal to the different expression

of equation (he), The corresponding alternate expression for the rate
of heat transfer is

i = o
Pele(bgw - hy) N Re \jzd g1(8) (A8)

which should be equal to the expression of equation (43).

Values of r computed from the alternate equation (A7) are tabulated
in column (b) of table IV. Compared with the values in column (a) origi-
nally computed from equation (42), it is seen that the alternate inde-
pendent calculations agree rather well with the original computations.

The largest discrepancy amounts to 0.2 percent for values of Prandtl num-
ber less than 2. For a Prandtl number of 10, the two computations differ
by 3 percent. In this latter case, the values from the integral method
(eq. (A?)) are regarded as less accurate, inasmuch as their evaluation

~
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involved several quadratures of functions such as u*Pr which, for

Pr = 10, vary so rapidly that high accuracy could not be obtained with
the intervals selected. Nevertheless, the over-all agreement between the
two independent methods of computation is regarded as satisfactory.
Similarly, a satisfactory check on numerical computations of @, by the
two independent methods is obtained, as evidenced by comparison of col-
umns (c) and (d) in table IV. Compared with the original calculations
from equation (43) (column (c)), the calculations from the alternate
equation (A8) (column (d)), agree to within 0.5 percent for all values of
Prandtl number.
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APPENDIX B
HEAT TRANSFER IN SEPARATED TURBULENT FLOWS

Although complete calculations cannot at present be made for sepa-
rated, compressible, turbulent mixing layers, certain of the ideas
developed nevertheless can be applied to such cases. For this purpose
it is assumed that the Prandtl number is unity. Equation (Al) was
developed from general energy considerations and is applicable also to
turbulent flows. . :

o . v
2
Qy = b\jr (# - hy + %é)pu dy . (B1)
=00

The assumption Pr = 1 enables the relatidh between enthalpy and velocity
to be expressed as the Crocco integral,

hw ue2 ‘
= - .1 - £ -
hy = 1 + <he (1 - uy) + ™ u, (1 - uy)
. 2 2
hay Ue 2 Ue
= = 1+ =—-nh - £
-0 + u*(‘ She w%) Uy~ (B2)

so that the average rate of heat transfer becomes, after some algebraic
manipulation wherein the relationship haw* = (ue2/2he) + 1 is used and
the dimensionless variable § = cy/x is introduced,

- e} 2
q:w 1 > 1 o u.* d.g
= - p*u* d§ = R (33)
Pele(hgy -hy) O o0 by 1+ u, (=X - > - u2 e
e 2 =
W 2hy

where the constant ¢ 1is inversely proportional to the rate of spread
of the turbulent mixing layer. Clearly, it is necessary to know the
velocity distribution u*(g) within a turbulent mixing layer, and the
rate of spread o, before the average rate of heat transfer can be cal-
culated. Such knowledge, unfortunately, is not yet available except for
two cases.

For.the limiting case of zero Mach number, the veldcity distribution
and rate of spread are known from the paper of Tollmien (ref. 11). By
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substituting Tollmien's velocity distribution (6 = 12 at Re = 2.5x108
from his experiments) into equation (B3) there results

8y

= 0.012
Déue(haw - hw)

which leads to an interesting result when comparison is made to a corre-
sponding attached turbulent boundary layer. At the same Reynolds number
as in Tollmien's experiments, the corresponding heat-transfer parameter
for a turbulent boundary layer of constant pressure would be approximately

qW il - - CF - .
[peue e — 1) (st) 0.0019

which indicates the heat transfer in separated turbulent flow not to be
smaller than in a turbulent boundary layer, but to be, in fact,
0.012

0.0010 = 6.3 times as large. This comparison is in sharp contradistinc-

.tion to the analogous comparison for the laminar case where the corre-

sponding ratio is about 0.6 rather than 6.3.

It is to be noted that the data available at present for compressible
turbulent mixing layers indicate the Mach number to have a pronounced
effect on the integral in equation (B3). The data of Gooderum, Wood,
and Brevoort (ref. 12) at a Mach number of 1.6 indicate that the rate of
spread (about 90 angle) of turbulent mixing layer is much less than at
low speed (about 14° angle); hence the integral in equation (B3) also
would be proportionately less. Consideration also of the density change
on going from M = 0 to M = 1.6 would then yield a value for this integral
57 percent less than that at low speed, which is equivalent to a heat
flux in turbulent separated flow of about 2.8 times that in a correspond-
ing turbulent boundary layer. The ratio of heat fluxes, amounting to
6.3 at Me = 0, and 2.8 at My = 1.6, obviously is strongly dependent on
Mach number. Consequently, if the marked trend persists, a separated
turbulent flow might not have a greater heat flux than a turbulent boundary-
layer flow at sufficiently high Mach numbers. Experiments on the rate of
spread and on the velocity distribution within turbulent mixing layers at
high supersonic speeds are required before this can be ascertained.
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APPENDIX C
APPLICATION TO AXTALLY SYMMETRIC FLOW

Although the analysis as developed applies directly to two-
dimensional flow only, it can be easily extended to axially symmetric
flow by employing Mangler's transformation. This transformation for a
constant-pressure, separated, laminar mixing layer is identical to that
for a laminer boundary layer. For a given Reynolds number and Mach num-
ber, the mixing-layer thickness in axially symmetric flow is l/J§'times
that in two-dimensional flow. Consequently, the heat-transfer rate, in
place of equation (45), is given by the equation

QW ' 23[I'b

s e
= - £ :
hen/PolichelC N3 fg . (h* Py + S U-*2>d§ (c1)

and hence the average heat-transfer rate per unit area dy = Qw/nrbl is

31 ¢
' = %3. f ’ <h* - by, + % u*2>d§ (c2)
he y/ PeleHelC Ca

which is seen, by comparison with equation (46) to be 23 times as large
as for two-dimensional flow, just as it is in the case of comparison of

an attached boundary layer on a cone with the corresponding laminar bound-
ary layer on a plate. Consequently, the ratio @w/(qw)bz tabulated pre-
viously for two-dimensional flow also applies directly to axially symmetric
flow. If gas is injected into an axially symmetric region of separated
flow, then for the same fractional reductio%Jin heat-tr?nsfer rate (same

2 my /[yl
value of qw/(qw)c__o) the value of -{; = i—£;2l£=éi=ﬁg—— in the axially
1 peue“ec/l

symmetric flow would be the same as the value of

two;dimensional flow.
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TABLE IV.- COMPARISON OF INDEPENDENT METHODS OF CALCULATING
RECOVERY FACTOR AND HFEAT-TRANSFER RATE

Heat Transfer
Recovery Factor (c (d)
(a) (b) -wdRe;C iw"/ﬁ?a
r from eq. (42) r from eq. (AT) | Pede(bay - hy) Pelte (hay - by)
f . (b
Pr hpru*ozu*o' 1,(0) rom eq. (k3) from eq. (A8)
Foba)+ ——F; Falba) |~ F2(t‘:d)*'l:l(o) Mgty )Pr = 1,(0)
' . = —— =14
hu*ou*o ' PrF, (£g)
0.1 0.361 0.360 - 0.833 0.836
.25 504 .503 67h . 6Tk
.5 .T12 713 .527 .525
12 .8k49 .849 Bs8 6
1.0 1.000 1.000 .399 .398
1.5 1.228 1.227 .334 334
2.0 1.kok 1.k22 | .293 .293
10.0 3.27 3.k0 .135 136

TABLE V.- FUNCTIONS APPEARING IN EQUATIONS FOR GAS INJECTION

¢ Pr = 0.5 Pr = 0.72 Pr = 1.0

N Il Iz Il I2 Il I2
-1.233] 0.000 {0.000 | 0.000 {0.000 |0.000 |0.000
-1.2 .002 | .002| .001| .o01 | .000 { .000
-1.1 .019{ .0o13| .011 | .010 | .006 | .006
-1.0 Ol | L031| .028 | .025 | .017 | .019
-.9 076 | .055| .051 | .ok7 | .033 | .039
-.8 Jd12 | .083) .08 | .otk | .055 | .065
-7 52 | .116) .113 | 106 | .082 | .097
-.6 196 | 153 .151 | .14 | .115 | .13k
-5 Lo poa9h | 193 | 186 | .151 | .178
-4 295 | .2k1| .239 | .233 | .193 | .226
-.3 349 | 201 .288 | .285 | .238 | .279
-.2 Aos | 36| 31| 381 | .288 | .337
-1 A6k | Jbos| .397 | ko2 | .31 | .hOO
0 525 | ke8| 456 | Jhe7 | 398 | 46T
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Figure 2.—Enthalpy-velocity functions for separated laminar mixing loyer
and for laminar boundary layer; P,=0.72.
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Figure 3.—Velocity profiles in separated laminar mixing layer and in laminar boundary
layer for various wall temperatures; M,=10, P, =072.
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Figure 5. —Effect of mass injection on recovery factor,
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Figure 6. —Effect of mass injection on heat transfer for case hy /hg=l
(also applies to case Mg =~o for arbitrary hy).
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